Понедельник 19.11. Федор Парт: "Нижние оценки для резолюций с линейными уравнениями над кольцами"

Speaker: 
Федор Парт
Date: 
Monday, November 19, 2018 - 14:00
Place: 
ауд. 106
Abstract: 

Система доказательств Res($lin_R$) определяется как расширение резолюционной системы доказательств Res, в ней выводимыми утверждениями являются дизъюнкции линейных уравнений над кольцом R. Одна из мотиваций для изучения таких систем заключается в том, что если R - это конечное поле $F_p$ или поле рациональных чисел, то Res(lin_R) является простейшим примером систем $AC_0[p]$-Frege или $TC_0$-Frege соответственно, доказательство суперполиномиальных нижних оценок на длины доказательств в которых - давно открытая проблема. Оказывается, даже для Res($lin_R$) проблема доказательства нижних оценок в общем случае крайне нетривиальна и на данный момент является открытой.

В докладе мы докажем ряд dag-like и tree-like верхних и нижних оценок на размер доказательств в Res($lin_F$) для разных полей F. В случае char(F)=0 мы докажем экпоненциальную нижнюю оценку, но не для КНФ, а для клоза вида $a_1x_1+...+a_nx_n=A$ для больших, то есть растущих суперполиномиально от n, коэффициентов. Эта оценка получается как следствие из полиномиальных нижних и верхних оценок на размер кратчайшего Res($lin_F$) доказательства как функции от размера образа линейной формы $a_1x_1+...+a_nx_n$. Также в случае char(F)=0 мы докажем экспоненциальную tree-like нижнюю оценку на $a_1x_1+...+a_nx_n=A$, если коэффициенты малы, то есть ограничены полиномом от n. Это влечет экспоненциальное разделение dag-like и tree-like Res(lin_F) в случае малых коэффициентов

Для конечных полей мы докажем экспоненциальные разделения между tree-like Res(lin_Fp) и tree-like Res(lin_Fq) для различных p и q, где в качестве разделяющих КНФ использованы mod-p Цейтинские формулы. Этот результат, а также экспоненциальная нижняя оценка для tree-like Res(lin_Fp) на случайных КНФ, получается как следствие варианта классического соотношения ширины и размера резолюционных доказательств вкупе с нижней оценкой на ширину через симуляцию в Polynomial Calculus. Мы обобщим доказательство Ицыксона и Соколова tree-like Res($lin_{F_2}$) нижней оценки на PHP для произольных полей F с помощью теоремы Алона-Фюреди о покрытиях гиперкуба гиперплоскостями.

Доклад основан на совместной статье с И. Цамеретом.